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Introduction Method Model capacity impact

The currently used word embedding techniques use The method in this paper adopts the depth Neural 70.0 e o b
fixed vectors to represent words without the concept Network Language Model (NNLM), meanwhile, it q7 5| —e— layer mmber=s
of context and dynamics. This paper proposes a deep absorbs the idea of generating the word vector from —>— fayernumber=iz
neural network CoDyWor to model the context of the internal state of NNLM in ELMo, and replaces the
words so that words in different contexts have BiLSTM encoder in the model with the Transformer
different vector representations of words. CoDyWor is encoder with concurrent computing and contextual
a deep contextualized word representation that coding capability, and introduces a multi-layer
models both (1) complex characteristics of word use attention mechanism, blending word representation
(e.g., syntax and semantics), and (2) how these uses information of different levels in neural network, and
vary across linguistic contexts (i.e., to model polysemy). generating the word vector with contextual meanings. 75. 0
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It can be found that increasing the number of layers of Transformer

_ within a certain range or increasing the number of self-attention heads
Al m Approach = ELMo Framework + Transformer Feature Extractor in Transformer can both improve the inference accuracy of the model.
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LSTM layer outputs a context-dependent repre- bedroom bedroom bedroom 7 bedroom

The NLP system available based on deep learning sentation h -5 where j = 1,..., L. <o oo i i
usually first converts the text input into a vectorized Attention to next word Attention to previous word
word representation, i.e. the word embedding vector,
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and then proceeds to be processed next. We need Transformer Feature Extractor u }, m
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meaning, syntax, common sense, and so on. !
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The word embedding technique described above can convert words into vectors, and 1 o+

can ensure that vectors corresponding to similar words are closer in vector space. wordy - word 5 wordy - wordy

Please note: A Word corresponds to a fixed vector. The overall framework of the dynamic context representation model of deep context
proposed in this paper is illustrated in above Fig. It consists of two main processes: 1) :

the masked language model on the left of Fig.; 2) The Transformer layer in the pre- CO NnC | usion
trained masked language model is extracted and a new output layer is added to form

the model of this paper—the deep context dynamic word representation model (on the - - - . _
Layer 1 ELMo vectors of the word bank right side of Fig.), which blends multiple outputs of Transformer layer through a multi- This Paper proposes an EfﬂCIent' Slmply structured

e river bank was ot cedh layered attention mechanism, generating a deep dynamic word representation vector. deep context dynamic word representation model
We can cluster the above

“rontextual vectors into 2 groups. CoDyWor that can be widely used in natural
The word vectors of bank in the language processing tasks. The context dynamic
upper right cluster mean a slope Results word representation generated by the model can

e can deposit maney at the bank land besides water, while the . df i ¥ ing task h
i cosh o e bank bottom left cluster has the meaning e used for natural language processing tasks suc

Lopseemiecssmsmes - of a financial institution. CoDyWor VS Other Word Embedding as Igglcal reasonr:ng, .nameciljent]lctytrﬁcoggltlon ind
reading comprehension and so forth, and may be

A word can correspond to a different S Glove universally utilized to a certain extent. The context
word vector depending on the context. | _ il dynamic word representation generated by the
CoDyWor model in the above tasks performs
better than the current mainstream static word
2018 GPT -> BERT -> 2019 BERT improved version _ representations.
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